

Boosting drought tolerance in key cereals in the era of climate change

Yasmine Vanhevel^h, Vincenzo Rossi^a, Andrea Brandolini^b, Solomon Chanyalew^c, Arnaud Dauriat^d, Primetta Faccioli^e, Jill Farrant^f, Tsanko Gechev^g, Sofie Goormachtig^h, Thomas Hartwigⁱ, Julia Engelhornⁱ, Marc Heijde^h, Mara Lai^j, Irene Liverani^k, Sujeeth Neerakkal^I, Hilde Nelissen^h, Macarena Sanz^m, Daniela Scheuermannⁿ, Zerihun Tadele^o, Robert VanBuren^p, Steven Vandenabeele^q

Introduction and project's objectives

Drought due to climate change has a severe impact on agriculture, requiring measures to secure yield stability under water shortage conditions. The project entitled:

"Boosting drought tolerance in key cereals in the era of climate change" – Acronym: BOOSTER - has the aim to create climate resilient and drought tolerant cereals.

- Genome-wide identification of maize and teff cis-regulatory elements (CREs) and genes associated with drought tolerance.
- Comparative genomics of drought CREs and genes in three different grasses and validation of maize and teff drought CREs genome-wide data.
- Development and characterization of new seaweed extract (SWE) and microbial biostimulants for improving maize and teff drought tolerance.
- Production of the best performing SWE and microbial biostimulants and evaluation of their performance in improving maize and teff drought tolerance through field trials.

2

• Project dissemination, exploitation, and communication

Two cereal crops and one desiccation tolerant plant

Maize i) crop of **global importance**; ii) drought is a leading cause of yield loss; iii) important **model system** with numerous genetic and genomic resources; iv) feedstock for the production of various products used **for human consumption, livestock feed, and biofuel**. This project will focus on the European maize germplasm.

Two synergistic strategies

Natural genetic variation within CRE in response to drought conditions (MOA/mRNA-seq)

Teff: i) major food and nutrition security crop in the Horn of Africa; ii) superfood (gluten free, fiberrich, outstanding nutritional properties); iii) belongs to the grass subfamily *Chloridoideae*, containing grasses evolved to survive extreme environments; iv) relatively drought tolerant, but still affected by prolonged drought; v) closely related to the Southern African desiccation-tolerant grass *Eragrostis nindensis*

High quality genome sequences for maize genotypes & teff and *E. nindensis* are available. The major objective of BOOSTER is to implement strategies for **improving drought tolerance in European maize and Ethiopian teff**. The aim is to explore the potential for transferring **genotype- and species-specific drought responsive features** from an orphan cereal like teff to a cash crop like maize.

- MNase-defined cistrome-Occupancy Analysis (MOA-seq): allows a high-resolution (ca 30 bp) genome-wide identification of putative TF-binding sites.
- Coupled to mRNA-seq, quantitative variations of TFs binding in the CREs can be detected in different genotypes under well-watered (WW) and drought stress (DS) conditions.
- Identified drought- responsive CREs can be linked to the expression of key drought tolerant genes.
- Integration of MOA-seq results in response to drought with available drought GWAS to further improve the identification.
- Data validation is performed by genome editing and other methods to modify the putative ciselements and/or to knockout genes they regulate.

Seaweed extracts

Drought stress

Project impacts

Result KPIs	Outcome KPIs
WP1-4	Typology: scientific
- 12 publications in mid-high tier IF journals - Training of ca. 11 post-docs & 3 PhD students	 Transfer of MOA/mRNA-seq technique to maize African germplasm or any other crop Use of the technique for improving quantitative traits other than drought tolerance Maize/teff leaf blade CREs maps for eQTLs-based studies
	Potential transfer of drought genotype and species-specific drought responsive features from <i>E. nindensis</i> /teff to maize through new breeding technologies
	≥10 trained young researchers hired
WP1, 2 & 5	Typology: economic/technological
List of maize & teff genetic variants within CREs & genes functionally associated with drought tolerance	Production of 1-3 maize & teff drought-tolerant genotypes through breeding programs First release of drought-tolerant varieties: reduction of yield loss and saving ca. €24mn/year & €15mn/year for maize & teff production, respectively
	Maize drought-tolerant genotypes can save ca. 1.75-4 m ³ /year of water required for irrigation of maize in EU
WP3, 4 & 5	Typology: economic/technological
Patents for up to 4 maize & 4 teff field trials validated seaweed extracts and microbial biostimulants	 Commercialization and diffusion of 4 maize & 4 teff biostimulants Revenue spanning from € 20 mn/year to 80 mn/year Transferability of seaweed extracts and microbial biostimulants for improving drought
	Biostimulants: reduction of yield loss due to drought of ca. 0.33%, saving about €8mn/year and €2mn/year for maize and teff production, respectively Maize biostimulants can save ca. 0.58-1.33 million m ³ /year of water required for irrigation
WP3, 4 & 5	Typology: social
Patents for up to 4 maize & 4 teff field trials validated seaweed extracts and microbial biostimulants	 Commercialization of 4 maize & 4 teff biostimulants Hiring of minimum 10 agronomists working on seaweed extract biostimulants
WP5	Typology: social
Targeting ca. 25.000 citizens/students/professionals in the 10 consortium countries	Increased public knowledge and awareness about bio-based technologies for ca. 50.000 citizens/students/professionals in all EU27 & additional African and Associated countries (see section 2.2 for methods and details)

- Seaweed extracts are efficiently applied before the occurrence of the stress and induce molecular priming by modulating the response to oxidative stresses.
- Plant growth promoting Rhizobacteria: candidates will be identified by i) collecting soils that have a history of long periods of drought + plant genotypes adapted to drought (e. g. *E. nindensis*) and ii) colonizing root endophytes and rhizosphere to alter root exudates under drought stress.
- Mode of action: BOOSTER will investigate the mode of action of selected seaweed extracts and plant growth promoting Rhizobacteria to improve the development of a scientifically based biostimulant formulation.
- Field trials: will be performed in distinct European locations and in drought prone areas of Ethiopia, using selected biostimulants for their validation in a relevant environment.

Author Affiliations: a) Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, (Italy); b) Council for Agricultural Research and Economics, Research and Economics, Research Centre for Animal Production and Aquaculture, Lodi, (Italy); c) Ethiopian Institute of Agricultural Research, Debre Zeit, (Ethiopia); d)

